Stress Corrosion Cracking Class Exercise | Туре | Susceptible Alloys | Conditions for Cracking | Fixes | |----------------------|---|--|---| | Chloride | 300 Series Stainless
Steels | A. Evaporative Heat Flux Which Produces Cl⁻ Deposits B. Usually Above 140-150°F (60-65°C) C. Low pH is Bad | A. Stress Relief B. Use Duplex or Ferritic Stainless
Steels C. Use High Nickel (>30-40%) Alloys,
Titanium, Copper Alloys | | Polythionic | 300 Series Stainless
Steels (Sensitized) | A. Shutdowns B. Water and Sulfide Scale | A. Use 321 SS or 347 SS B. Shutdown Precautions: (1) Soda Ash Wash and (2) N₂ Blanket | | Caustic | 300 Series Stainless
Steels and Carbon Steel | A. Hot Deposits | A. Stress ReliefB. Use Monel or Other Nickel-Based
AlloysC. Keep Generator Tubes Submerged | | Ammonia | Brasses (Cu-Zn) | A. Ammonia + O ₂ + H ₂ O | A. Remove O₂ and Use Acid Washes at Shutdown B. Use Alloys Without Zinc (e.g., CuNi) | | Wet H ₂ S | Carbon Steel Vessels | A. H₂S Level >50 ppm and H₂O B. More Likely if Cyanides or Ammonia Present C. Mostly Vessels, Rarely Piping | A. Use Coating or Cladding B. Remove CN⁻ With Polysulfide |